Recherche par propriété

Cette page fournit une simple interface de navigation pour trouver des entités décrites par une propriété et une valeur nommée. D’autres interfaces de recherche disponibles comprennent la page recherche de propriété, et le constructeur de requêtes ask.

Recherche par propriété

Une liste de toutes les pages qui ont la propriété « Deepen » avec la valeur « Profondeur de champs et distance focal: http://apprendre-la-photo.fr/les-secrets-de-la-perspective/ ». Puisqu’il n’y a que quelques résultats, les valeurs proches sont également affichées.

Affichage de 17 résultats à partir du n°1.

Voir (200 précédentes | 200 suivantes) (20 | 50 | 100 | 250 | 500).


    

Liste de résultats

    • Ballon electrostatique  + (===Allons plus loin dans l'explication=== ===Allons plus loin dans l'explication=== Coulomb, physicien français (1736 – 1806), a démontré que la présence de deux corps chargés provoque l’apparition de forces attractives ou répulsives selon le signe de leurs charges q. Cette force F est inversement proportionnelle à la distance r qui les sépare au carré : Sur la figure suivante, on peut se rendre compte que la force d’attraction diminue rapidement avec l’éloignement. Plus l’éloignement est important, plus il faut arracher d’électrons pour pouvoir soulever un bout de papier.
      Si on veut soulever un bout de papier de 10 mg avec ce procédé, il faudra donc arracher environ 10 700 000 000 000 000 000 000 électrons du ballon ! Le passage répété des cheveux sur le ballon de baudruche arrache des électrons aux atomes situés à la surface de celui-ci. Les électrons étant des charges négatives, cet endroit du ballon devient chargé positivement. Les cheveux ayant perdu des électrons sont alors chargés positivement à leur surface. En revanche, le papier n’est pas chargé. Il est dit électriquement neutre. Pourquoi le papier est-il attiré par le ballon frotté ? En effet, la force dont parle Coulomb ne s’applique que pour deux objets chargés. Or ce n’est pas le cas ici car le papier est resté électriquement neutre. En fait, le fait d’approcher une source de charge positive de la feuille a tendance à la polariser. C’est-à-dire qu’il y a d’infimes migrations de charges des atomes (les électrons essentiellement) vers la face opposée au ballon. La feuille se retrouve alors avec une face de charge opposée à celle du ballon et elle est donc attirée par le ballon. Pourquoi seuls les électrons sont-ils arrachés ? Pour bien visualiser le problème, prenons l’exemple de l’atome d’hydrogène. Il est constitué d’un noyau et d’un électron qui gravite autour (dans le cas général un atome, à l’état stable, possède autant de protons que d’électrons). Pour simplifier la représentation, nous représentons l’orbite de l’électron comme circulaire. L’électron est assez éloigné du noyau. Les forces qui l’empêchent de sortir de son orbite diminuent avec sa distance au noyau. De plus, il existe une autre force appelée interaction forte qui assure la cohésion du noyau. En effet, le noyau d’un atome est composé de particules neutres et de particules positives. Les particules positives se repoussent entre elles d’après la loi de Coulomb. C’est cette interaction forte qui empêche les protons de s’éloigner. Donc le noyau est très difficile à « casser ». En revanche, l’électron n’oppose presque pas de résistance. Et le simple passage des cheveux permet de l’extraire de son atome. En réalité, seuls les électrons de la couche externe, c’est-à-dire les plus éloignés du noyau, peuvent être « arrachés » (les atomes répartissent les électrons sur différentes couches). On dit alors que l’on a ionisé l’atome.
      ntes couches). On dit alors que l’on a ionisé l’atome.)
    • Expansion de l'univers  + (Avec les théories de la relativité restreiAvec les théories de la relativité restreinte et de la relativité générale, notre représentation de l'univers a radicalement changé au 20e siècle. L'univers est en expansion. Cela signifie que les distance entre les astres augmentent avec le temps. Etrangement pourtant, ce ne sont pas les astres qui bougent. C'est l'espace-temps entre les astres qui se dilate comme le fait le caoutchouc d'un ballon qu'on gonfle. L'idée que l'univers ne serait pas infini, fixe, statique, éternel date de bien avant le début du 20e siècle. Le paradoxe de Cheseaux Olbers a été exposé de manière documentée pour la 1ère fois par Thomas Digges en 1576. Si on suppose un univers infini, fixe, statique et éternel, il contient donc une infinité d'étoiles réparties de manière homogène. Si cela est le cas, quelle que soit la direction dans laquelle on regarde, il devrait y avoir une infinité d'étoile. Donc le ciel nocturne devrait être occupé en tout point par une étoile. Donc le ciel nocturne devrait être aussi brillant qu'un étoile. De manière amusante, Einstein était persuadé que l'univers était fixe au début de sa carrière. Il a ainsi ajouté une constante dans ses équations pour les rendre compatibles avec l'hypothèse d'un univers fixe. Ce sont d'autres chercheurs qui ont produit le modèle du Big Bang à partir de la théorie de la relativité générale d'Eintein. L'expression "Big bang" a été utilisée pour la première fois à la radio dans le but de moquer un modèle considéré par de nombreux astrophysiciens comme absurde.de nombreux astrophysiciens comme absurde.)
    • Arc-en-ciel de chambre  + (Chaque couleur est caractérisée par une loChaque couleur est caractérisée par une longueur d'onde de l'ordre du nanomètre. La longueur d’onde est la distance parcourue par l’onde lumineuse pendant la durée d’une période (deux pics sur le graphique)

      Arc-en-ciel de chambre OndeCouleur.png
      Arc-en-ciel de chambre LongeurOndeCouleur.png



      Les couleurs visibles par l'œil humain sont les couleurs dont la longueur d'onde se situe entre 380 et 740 nanomètres.

      [ < 380] ultraviolet

      [380 - 446] violet

      [446 - 520] bleu

      [520 - 565] vert

      [565 - 590] jaune

      [590 - 625] orange

      [625 - 740] rouge

      [ > 740] infrarouge

      Si on assemble tous les intervalles des couleurs que l'humain peut voir, on obtient un intervalle allant de 380 à 740 nanomètres.


      La lumière blanche est polychromatique, c’est-à-dire composée de plusieurs couleurs. L'addition des couleurs de l'arc-en-ciel donne la couleur blanche. L'expérience permet la dispersion (décomposition) de la lumière : les différentes couleurs qui composent la lumière blanche ne sont pas déviées de la même façon par l'eau.

      Lorsqu'un rayon lumineux pénètre l'eau, il se produit une décomposition de la lumière car les deux milieux (air et eau) possèdent des indices de réfraction différents. Or la réfraction est fonction de la longueur d'onde, ce qui entraîne la décomposition du rayon en autant de couleurs qui le constituent.

      La lumière est brisée à la sortie de l'eau, chaque couleurs qui composent la lumière blanche ne se brisent pas sous le même angle, d'où le fait qu'elles apparaissent à des endroits différents et la formation d'un arc-en-ciel.
      u'elles apparaissent à des endroits différents et la formation d'un arc-en-ciel.)
    • Ballon électrostatique - Ballon magique  + (Coulomb, physicien français (1736 – 1806),Coulomb, physicien français (1736 – 1806), a démontré que la présence de deux corps chargés provoque l’apparition de forces attractives ou répulsives selon le signe de leurs charges q. Cette force F est inversement proportionnelle à la distance r qui les sépare au carré : Sur la figure suivante, on peut se rendre compte que la force d’attraction diminue rapidement avec l’éloignement. Plus l’éloignement est important, plus il faut arracher d’électrons pour pouvoir soulever un bout de papier. L’attraction exercée par un proton sur un électron éloigné de 5 mm dans les conditions idéales est de :
      F = 9,2.10^-24 N
      Si on veut soulever un bout de papier de 10 mg avec ce procédé, soit vaincre un poids de 0,098 N, il faudra donc arracher environ 10 700 000 000 000 000 000 000 électrons du ballon ! Le passage répété des cheveux sur le ballon de baudruche arrache des électrons aux atomes situés à la surface de celui-ci. Les électrons étant des charges négatives, cet endroit du ballon devient chargé positivement. Les cheveux ayant perdu des électrons sont alors chargés positivement à leur surface. En revanche, le papier n’est pas chargé. Il est dit électriquement neutre. Pourquoi le papier est-il attiré par le ballon frotté ? En effet, la force dont parle Coulomb ne s’applique que pour deux objets chargés. Or ce n’est pas le cas ici car le papier est resté électriquement neutre. En fait, le fait d’approcher une source de charge positive de la feuille a tendance à la polariser. C’est-à-dire qu’il y a d’infimes migrations de charges des atomes (les électrons essentiellement) vers la face opposée au ballon. La feuille se retrouve alors avec une face de charge opposée à celle du ballon et elle est donc attirée par le ballon. Pourquoi seuls les électrons sont-ils arrachés ? Pour bien visualiser le problème, prenons l’exemple de l’atome d’hydrogène. Il est constitué d’un noyau et d’un électron qui gravite autour (dans le cas général un atome, à l’état stable, possède autant de protons que d’électrons). Pour simplifier la représentation, nous représentons l’orbite de l’électron comme circulaire. L’électron est assez éloigné du noyau. Les forces qui l’empêchent de sortir de son orbite diminuent avec sa distance au noyau. De plus, il existe une autre force appelée interaction forte qui assure la cohésion du noyau. En effet, le noyau d’un atome est composé de particules neutres et de particules positives. Les particules positives se repoussent entre elles d’après la loi de Coulomb. C’est cette interaction forte qui empêche les protons de s’éloigner. Donc le noyau est très difficile à « casser ». En revanche, l’électron n’oppose presque pas de résistance. Et le simple passage des cheveux permet de l’extraire de son atome. En réalité, seuls les électrons de la couche externe, c’est-à-dire les plus éloignés du noyau, peuvent être « arrachés » (les atomes répartissent les électrons sur différentes couches). On dit alors que l’on a ionisé l’atome.
      ntes couches). On dit alors que l’on a ionisé l’atome.)
    • Baguette magique  + (Coulomb, physicien français (1736 – 1806),Coulomb, physicien français (1736 – 1806), a démontré que la présence de deux corps chargés provoque l’apparition de forces attractives ou répulsives selon le signe de leurs charges q. Cette force F est inversement proportionnelle à la distance r qui les sépare au carré : '''F(peigne/balle) = [ q(peigne)*q(balle) ]/ [ 4*pi*Eo*r²]''' Sur la figure suivante, on peut se rendre compte que la force d’attraction diminue rapidement avec l’éloignement. Plus l’éloignement est important, plus il faudra arracher d’électrons pour pouvoir déplacer une balle. L’attraction exercée par un proton sur un électron éloigné de 5 mm dans les conditions idéales est de : '''F = 9,2.10^-24 N'''
      Le passage répété du tissu sur le peigne va arracher des électrons aux atomes situés à la surface de celui-ci. Les électrons étant des charges négatives, cet endroit du peigne est chargé positivement. Le tissu ayant perdu des électrons est alors chargé positivement à sa surface. En revanche, la balle n’est pas chargée. Elle est dite électriquement neutre. ''Pourquoi la balle est-elle attirée par le peigne frotté ?'' En effet, la force dont parle Coulomb ne s’applique que pour deux objets chargés. Or ce n’est pas le cas ici car la balle est restée électriquement neutre. Le fait d’approcher une source de charge positive de la balle va avoir tendance à la polariser, c’est-à-dire qu’il va y avoir d’infimes migrations de charges des atomes (les électrons essentiellement) vers la face opposée au peigne. La balle se retrouve alors avec une face de charge opposée à celle du peigne et elle est donc attirée par le peigne. ''Pourquoi seuls les électrons sont-ils arrachés ?'' Pour bien visualiser le problème, prenons l’exemple de l’atome d’hydrogène. Il est constitué d’un noyau et d’un électron qui gravite autour (dans le cas général un atome, à l’état stable, possède autant de protons que d’électrons). Pour simplifier la représentation, nous représentons l’orbite de l’électron comme circulaire.
      la représentation, nous représentons l’orbite de l’électron comme circulaire.)
    • Lumière : dispersion de la lumière  + (Tout comme l'eau et les prismes, les réseaTout comme l'eau et les prismes, les réseaux sont également capables de décomposer la lumière blanche. Un réseau est un support plat constitué de nombreux sillons très rapprochés et à égale distance les uns des autres. Un CD étant en effet constitué de nombreux sillons rapprochés (plusieurs centaines par millimètres) et étant plan, on peut le considérer comme un réseau. La lumière blanche est donc décomposée quand elle rencontre les sillons présents sur le CD. rencontre les sillons présents sur le CD.)
    • Faire de la pâte squichy  + (Toutes les matières ont une valeur de condToutes les matières ont une valeur de conductivité électrique: cela caractérise l'aptitude d'un matériau à conduire l'électricité. La valeur est en siemens par mètre (S/m), et on nomme cette valeur par ce symbole: ''σ.'' Cette formule indique qu'un matériau grand peut conduire plus d'électricité qu'un petit matériau. Les matériaux ont aussi une capacité à diminuer la conduction d'électricité, cela se nomme la résistivité électrique. Plus la distance de parcours de l'électricité dans la matière est grande, moins il n'y aura d'électricité, le reste sera "absorbé" par la matière.é, le reste sera "absorbé" par la matière.)
    • Fabriquer un planeur  + (Un planeur ne fait que planer, il n’est poUn planeur ne fait que planer, il n’est pourvu d’aucun moyen de propulsion. Pour se maintenir en l’air, le planeur se déplace plus vite que l'air environnant. S'il n'y a pas de vent, un planeur peut continuer à planer s'il va assez vite. Pour pouvoir voler, un planeur doit être accéléré jusqu’à ce qu’il atteigne sa vitesse d’envol, c’est-à-dire la vitesse à laquelle les ailes engendrent une portance suffisante pour vaincre la force de gravitation. Un planeur a donc besoin d’être amené à une certaine hauteur avant de commencer à voler. Il existe deux techniques : le remorquage et le treuillage. Pour remorquer un planeur, on utilise un avion remorqueur. Un câble est fixé dans le nez du planeur. L’ensemble décolle et une fois parvenu à la bonne hauteur, le pilote du planeur utilise le système de largage du câble et commence à voler par ses propres moyens. Pour treuiller, on utilise un treuil, fixé en bout de piste de décollage. Cette technique ressemble un peu à la manière dont on lance un cerf-volant. Une fois autonome, le planeur peut encore prendre de l’attitude. Le planeur doit être dirigé sur une colonne d’air chaud et y faire un virage. Comme l’air chaud est plus léger que l’air ambiant, lorsque le planeur se trouve dans la colonne d’air, il se trouve aspiré vers les hauteurs. Cette technique permet au pilote de rester plus longtemps en vol. Le record mondial de distance est actuellement de 2100 km réalisé en Nouvelle-Zélande.nt de 2100 km réalisé en Nouvelle-Zélande.)
    • Un coup de pouce pour la biodiversité  + (<nowiki><u>'''Quelques exemple'''Quelques exemples de dispositifs et mesures'''

      '''*Champs/ zones agricoles''' :

      - replanter/entretenir des haies, créer talus et fossés,

      - favoriser les petites parcelles agricoles

      - utiliser le couvert végétal en dehors des périodes de culture pour ne pas laisser des terres à nu (plantes qui limitent le ruissellement et pompes les nitrates : moutarde, phacélie...)


      '''*Rivières et zones humides'''

      - restaurer/recréer/protéger des zones humides,

      - laisser les berges et fonds de rivière dans leur état naturel (ex : maintenir les zones de graviers pour la ponte des truites et autres espèces, les zones ombragées, favoriser la diversité des profondeurs, courants, la présence de méandres...)

      - installer un crapauduc # sous la route pour permettre aux crapauds de migrer d’une zone humide à l’autre


      * '''Bois et chemins de campagne'''

      - maintenir/ ne pas bétonner ou remplacer par des routes les chemins de terre qui circulent entre les champs et les bois, (couplage possible avec dessous)

      - interdire la circulation de voitures et motos sur ces voies (qui servent aussi aux tracteurs) (vignette panneaux interdiction circulation)

      - installer des grillages le long des routes traversant les bois pour éviter les traversées des animaux sauvages et les accidents, les orienter jusqu’aux ponts, tunnels et passerelles adaptés


      * '''Jardins partagés et jardins privés (dont potagers)''' :

      - laisser un tas de végétaux /de bois avec ouvertures pour hérissons et autres petits mammifères,

      - limiter le nombre de tontes de pelouses,

      - laisser des zones en friche (jamais tondues pour favoriser l'installation des plantes et attirer les pollinisateurs),

      - ne pas tailler les haies et buissons entre mars et août (période de nidification des oiseaux),

      - installer des hôtels à insectes, mangeoires et nichoirs (pour oiseaux et petits animaux), montrer des exemples de dispositifs « faits maison » avec du matériel récupéré,

      - installer/entretenir une petite mare

      - planter des espèces locales de fleurs riches en nectar/pollen pour attirer les pollinisateurs (citer des exemples ! Romarin, lavande, ciboulette...)

      - potager : planter variétés locales et espèces sauvages auxiliaires (limitent l’usage de phytosanitaires, repoussent les parasites ou attirent des insectes qui les éliminent)

      - utiliser la lutte biologique (ex : larves coccinelles qui mangent pucerons)

      - utiliser du couvert végétal (paillage)

      - utiliser des engrais et traitements naturels (compost, purin d’ortie…) plutôt que des produits phytosanitaires

      - sensibiliser le public à l’observation des espèces, animer des projets de sciences participatives, des ateliers de jardinage sans phytosanitaires, de fabrication de mangeoires** et nichoirs avec du matériel de récupération...


      ''**N.B : les ornithologues, scientifiques ou amateurs passionnés, sont actuellement très partagés au sujet des périodes auxquelles les mangeoires à oiseaux peuvent être utiles aux espèces. Une partie de la communauté ornithologique pense qu'il faut fournir de la nourriture aux oiseaux seulement en période hivernale, lorsque les sources de nourriture se raréfient, et qu'étendre le nourrissage au delà de cette période risque de perturber l'instinct des oiseaux, leur capacité à trouver de la nourriture ou leurs migrations. L'autre parrie de la communauté pense au contraire que fournir toute l'année de la nourriture aux oiseaux dans des mangeoires contribue à limiter les effets de la disparition rapide des sources de nourriture et d'abris pour les oiseaux, et à maintenir une plus grande diversité d'espèces dans les zones où elles sont les plus vulnérables (dans certains pays, le nourrissage est recommandé toute l'année). En France, à ce jour, cette question fait encore débat parmi les spécialistes et les passionnés, et il n'est pas possible d'affirmer avec certitude s'il vaut mieux garnir les mangeoires uniquement en hiver ou toute l'année.''


      '''* Centre-ville :'''

      - favoriser les murets de pierre et les espèces de rocaille, pavés végétalisés, ne plus désherber ou utiliser des techniques sans produits polluants (désherbage thermique)


      '''* Littoral :'''

      - ne pas ramasser la laisse de mer sur l’estran

      - sensibiliser le public aux bonnes pratiques de pêche à pied (tailles minimales de capture, retournement des blocs, outils de pêche non destructeurs…)

      - dunes : créer des sentiers protégés et installer des ganivelles ou des cordons pour éviter le piétinement.
      lt;br /><br /><br />'''* Littoral :'''<br /><br />- ne pas ramasser la laisse de mer sur l’estran<br /><br />- sensibiliser le public aux bonnes pratiques de pêche à pied (tailles minimales de capture, retournement des blocs, outils de pêche non destructeurs…)<br /><br />- dunes : créer des sentiers protégés et installer des ganivelles ou des cordons pour éviter le piétinement.</nowiki>)
    • La machine à vapeur  + (<nowiki>Dans la cocotte, l'eau en chDans la cocotte, l'eau en chauffant passe d'un état liquide à un état gazeux et occupe '''plus de volume''' qu'à l'état liquide.

      A l'état gazeux l'eau est '''compressible''' tout comme quand elle est dans un état liquide.


      L'eau à l'état gazeux est compressée dans la cocotte, car elle occupe plus de volume. La pression devient plus importante à l'intérieur qu'à l'extérieur de la cocotte. Au moment où l'on ouvre la soupape de la cocotte on crée une '''dépression'''. C'est à dire que la pression à l'intérieur de la coquotte (produite par la vapeur) tend à s'équilibrer avec la pression de l'air à l'extérieur de la cocotte. On peut dire aussi, que '''la pression diminue à l'intérieur de la cocotte.'''

      Mais comme le volume d'air qui nous entoure est beaucoup plus important que le volume d'air dans la cocotte, on considère que l'intérieur revient à l'équilibre avec la pression atmosphérique au bout d'un certain temps.


      Mais revenons à nos moutons ! Lorsque l'on ouvre la soupape, les fluides rentrent en mouvement pour que la pression s'équilibre. Ce mouvement de fluide (la vapeur d'eau qui sort de la cocotte) allant en contact avec la pal de l'hélice va créer une pression de surface sur la pale. Cette pale va indirectement transmettre les efforts à l'arbre moteur qu'elle va faire entrer en rotation.




      *Que se passe t-il dans un moteur électrique à courant continue'''**''' (à aimant permanent) ?


      ** Qu'on appelle aussi dynamo ou encore alternateur




      Le moteur à courant continue se compose d'un aimant permanent, '''le stator''' (c'est la partie fixe, statique du moteur). Ce stator avec ses deux pôles entoure une partie mobile, l'arbre moteur aussi appelé le '''rotor''' (c'est la partie qui est en rotation). Ce rotor est composé de plusieurs '''bobinages''' (par exemple du fil de cuivre).

      *les aimants créent un champs magnétique dans les bobines, qui, lorsqu'elles sont en rotation, provoquent un déplacement d''''électrons''' libres dans le fil. '''C'est ce qu'on appelle : ''de l'électricité.'''''
      créent un champs magnétique dans les bobines, qui, lorsqu'elles sont en rotation, provoquent un déplacement d''''électrons''' libres dans le fil. '''C'est ce qu'on appelle : ''de l'électricité.'''''</nowiki>)
    • La diversité spécifique, l'assurance de la fonctionnalité  + (Dans les écosystèmes, les espèces peuvent Dans les écosystèmes, les espèces peuvent être regroupées par traits fonctionnels. Par exemple, pour des plantes, on peut regrouper l’ensemble des espèces ayant le même type racinaire au sein d’un premier trait, puis regrouper les espèces ayant des surfaces de feuilles équivalentes au sein d’un deuxième trait, etc. Pour les macro-invertébrés, un trait peut être le régime alimentaire, comme nous l’avons vu dans cette fiche. Un insecte (Plécoptère) et un crustacé (Gammare) peuvent être présents dans le même groupe (déchiqueteur par exemple) pour cette caractéristique. Un autre trait peut être l’habitat utilisé (végétaux, cailloux, sable…). Le plécoptère et le gammare peuvent différer de ce point de vue là, le premier vivant plutôt sur des cailloux, le second dans les végétaux. Ils mangent donc la même chose, mais pas au même endroit dans la rivière ! La même espèce peut être regroupée avec des espèces différentes dans des traits différents, en fonction de la caractéristique de celle-ci qui sera considérée. Une fois les traits renseignés pour les différentes espèces, il est possible d’avoir une image des différents processus ayant lieu dans un écosystème, comme la capacité à dégrader la litière (les feuilles mortes des arbres), la capacité d’une prairie à aller chercher les éléments nutritifs en profondeur, etc. Cette pratique scientifique se nomme l’écologie fonctionnelle. Ici, deux notions entrent en jeu : - La '''diversité spécifique''' représente le nombre d’espèces présentes dans un milieu donné ; - La '''diversité fonctionnelle''' peut être définie comme la diversité des traits fonctionnels, ces traits étant des composantes du phénotype des organismes qui influencent des processus écosystémiques. Dans un écosystème, les espèces vont assurer des fonctions qui sont similaires (par exemple plusieurs espèces dégradent la litière) mais chaque espèce va réaliser cette fonction de façon un peu différente. Plus la diversité spécifique est importante et plus la diversité fonctionnelle l’est aussi, plus les processus sont stables et pérennes. Lorsqu'advient une perturbation, certaines espèces seront capables d’y faire face et si certaines disparaissent, la redondance fonctionnelle fait que les processus vont pouvoir continuer à avoir lieu. Ce phénomène constitue donc aussi, entre autres, le moteur de la résilience des écosystèmes. Dans les écosystèmes peu diversifiés, la moindre perturbation peut avoir des conséquences importantes sur les processus écosystémiques.ortantes sur les processus écosystémiques.)
    • Libérez la chaussée !  +
    • Boussole  + (La composition de la terre induit un couraLa composition de la terre induit un courant magnétique qui se compose de deux pôles : un négatif et un positif. En frottant l'aiguille à l'aimant, ont oriente le champs magnétique des électrons ferriques qui la composent. En constituant notre boussole, le côté positif, est attiré par le pôle négatif de notre Terre, qui se situe au pôle Nord de notre planète.


      Champ magnétique terrestre
      (Le pôle nord magnétique de la Terre est le pôle sud géographique de celle-ci, attention.)
      ;)
    • Cours d'eau naturel et cours d'eau reprofilé  + (On a vu qu'une rivière pouvait sortir de sOn a vu qu'une rivière pouvait sortir de son lit lors des crues et causer des inondations. En réalité, la rivière s'écoule au quotidien dans ce qu'on appelle le lit mineur [1]. Lors des crues, elle va occuper son lit majeur, qui peut être bien plus vaste et recouvrir des prairies ou des zones humides qui sont situées sur les bords de la rivière. En aménagement, on parle de zone inondable lorsque l'on se situe dans le lit majeur d'un cours d'eau. La plupart des cours d'eau ne se contentent pas de s'écouler à la même vitesse tout du long. Celle-ci va varier, notamment avec la profondeur. Lorsque la rivière est profonde, l'eau s'écoule lentement. On parle de zone de mouille. Au contraire, lorsque la profondeur est faible l'eau va avancer très vite, souvent en slalomant entre les rochers ou galets. On appelle cela un radier. Sur une rivière qui n'a pas subit d'aménagement, on observe souvent une alternance de mouilles et de radiers le long du tracé. Dans les méandres, c'est l'extérieur du virage qui est le plus profond et l'intérieur qui accumule les galets. Certains cours d'eau ont des tronçons qui ne semblent pas connectés au reste de la rivière ou qui ne s'écoulent pas. On parle alors de bras mort. Ceux-ci peuvent être un formidable refuge de biodiversité [3]. Les poissons et autres animaux peuvent venir s'y reposer à l'abri du courant. Pour qu'une rivière soit en bonne santé et puisse accueillir de nombreuses espèces différentes, il est nécessaire qu'elle possède des habitats variés.saire qu'elle possède des habitats variés.)
    • Défi : lutter contre la sécheresse  + (Pour mesurer la sécheresse les scientifiquPour mesurer la sécheresse les scientifiques utilisent plusieurs indicateurs. Le SPI (de l'anglais Standardized Precipitation Index) est un indice permettant de mesurer la sécheresse météorologique. Il s’agit d’un indice de probabilité qui repose seulement sur les précipitations. Les probabilités sont standardisées de sorte qu’un SPI de 0 indique une quantité de précipitation médiane (par rapport à une climatologie moyenne de référence, calculée sur 30 ans). L’indice est négatif pour les sécheresses, et positif pour les conditions humides Le SWI (de l’anglais Soil Wetness Index ) est un indice d’humidité des sols. Il représente, sur une profondeur d’environ deux mètres, l’état de la réserve en eau du sol par rapport à la réserve utile (eau disponible pour l’alimentation des plantes). Lorsque l'indice d'humidité des sols (SWI) est voisin de 1, le sol est humide (supérieur à 1, le SWI indique que le sol tend vers la saturation). Inversement, lorsqu'il tend vers 0, le sol est en état de stress hydrique (inférieur à 0, il indique que le sol est très sec). à 0, il indique que le sol est très sec).)
    • Fabrication d'une maquette de bassin de versant  + (Une maquette de bassin versant peut être aUne maquette de bassin versant peut être animée et complétée selon les notions que l'on souhaite aborder. On pourra ajouter au sol, notamment sur les bords et aux embouchures des rivières, des morceaux de mousse ou d'éponge, du sable, de la terre, pour illustrer le comportement de l'eau dans des zones humides et les marais littoraux. Sur les pentes du bassin versant, on peut disposer de longs boudins de pâte à modeler, pour représenter les sillons des champs cultivés et les talus qui bordent certaines parcelles agricoles. En ajoutant des carréponges sur les « champs » et les berges des rivières, ceux-ci absorberont en partie l'eau, comme le font les haies et le couvert végétal que l'on fait pousser entre les récoltes pour limiter le ruissellement.es récoltes pour limiter le ruissellement.)